非公開求人
Lead ML Ops Engineer (Korea)/欧州最大のコンサルティングファームの求人
求人ID:1486922
更新日:2026/02/03
転職求人情報
職種
Lead ML Ops Engineer (Korea)
ポジション
担当者〜
おすすめ年齢
20代
30代
40代
50代以上
年収イメージ
年収イメージ:〜1000万円(経験・能力を考慮の上当社規定により決定)
仕事内容
MLOps engineer with 7-10 years of experience in ML model deployment for a client based in Korea. The MLOps engineer will be willing to work on location for the duration of the project (6-12 months), returning to Japan on completion.
Design and implement CI/CD pipelines for training, testing, and deploying ML models.
Build and maintain scalable ML infrastructure using cloud platforms AWS and some exposure to containerization (Docker, Kubernetes).
Experience moving models from research to production, ensuring efficient, scalable, and reliable deployment.
Continuously monitor model performance, data drift, accuracy, and resource usage in production, setting up alerts. Improve ML pipelines for efficiency, cost-effectiveness, and performance.
Experience leading a team and/or work with data scientists (model requirements) and software engineers (integration), preferred.
Design and implement CI/CD pipelines for training, testing, and deploying ML models.
Build and maintain scalable ML infrastructure using cloud platforms AWS and some exposure to containerization (Docker, Kubernetes).
Experience moving models from research to production, ensuring efficient, scalable, and reliable deployment.
Continuously monitor model performance, data drift, accuracy, and resource usage in production, setting up alerts. Improve ML pipelines for efficiency, cost-effectiveness, and performance.
Experience leading a team and/or work with data scientists (model requirements) and software engineers (integration), preferred.
必要スキル
Key Skills & Tools:
Programming (Python).
Cloud: Azure.
Containerization (Docker, Kubernetes).
CI/CD Tools (Jenkins, GitLab CI, Argo).
Knowledge of / Openness to learn: Domino Datalabs for MLOps.
Language: Korean (business level - must), Japanese (N2 or higher), English (business)
Nice to Haves:
Experience with AWS (EKS, Sagemaker, Step Functions) and hybrid/multi-cloud patterns.
Hands-on with model observability tools (e.g., Evidently, Prometheus/Grafana, OpenTelemetry).
Security and compliance in ML (secrets management, IAM, encryption, audit).
Experience with feature stores, model registries, and experiment tracking (e.g., Feast, MLflow).
Cost optimization of training/serving workloads; GPU/accelerator-aware scheduling.
Experience integrating with enterprise data platforms (e.g., SAP, Snowflake).
Soft Skills:
Strong collaboration and stakeholder management across Data Science, Platform, and Application teams.
Clear slide-making, written and verbal communication; ability to simplify complex technical topics for non-technical audiences.
Proactive ownership, bias for automation, and continuous improvement mindset.
Mentorship of junior engineers and championing engineering best practices.
Educational Profile:
Bachelor’s degree in Computer Science, Software Engineering, Data Engineering, or related field; Master’s or equivalent industry experience, is a bonus.
Programming (Python).
Cloud: Azure.
Containerization (Docker, Kubernetes).
CI/CD Tools (Jenkins, GitLab CI, Argo).
Knowledge of / Openness to learn: Domino Datalabs for MLOps.
Language: Korean (business level - must), Japanese (N2 or higher), English (business)
Nice to Haves:
Experience with AWS (EKS, Sagemaker, Step Functions) and hybrid/multi-cloud patterns.
Hands-on with model observability tools (e.g., Evidently, Prometheus/Grafana, OpenTelemetry).
Security and compliance in ML (secrets management, IAM, encryption, audit).
Experience with feature stores, model registries, and experiment tracking (e.g., Feast, MLflow).
Cost optimization of training/serving workloads; GPU/accelerator-aware scheduling.
Experience integrating with enterprise data platforms (e.g., SAP, Snowflake).
Soft Skills:
Strong collaboration and stakeholder management across Data Science, Platform, and Application teams.
Clear slide-making, written and verbal communication; ability to simplify complex technical topics for non-technical audiences.
Proactive ownership, bias for automation, and continuous improvement mindset.
Mentorship of junior engineers and championing engineering best practices.
Educational Profile:
Bachelor’s degree in Computer Science, Software Engineering, Data Engineering, or related field; Master’s or equivalent industry experience, is a bonus.
就業場所
就業形態
正社員
企業名
欧州最大のコンサルティングファーム
企業概要
世界40カ国以上でおよそ18万人の従業員を擁しコンサルティング、テクノロジー、およびアウトソーシングを提供する世界有数のコンサルティングファーム(1967年設立)の日本法人として2012年に設立され、最高レベルの技術と豊富な専門知識を兼ね備えた幅広い統合サービスを提供いたします。日本のチームは、現在以下の業種で一連の主要なサービスを中心に、お客様の業績と競争力を強化する改革を支援しています。
企業PR
当社はグローバルでは18万人という巨大なリソース・ケイパビリティを持ってはいるものの、日本においては再進出したばかりという欧州系(仏)コンサルファームです。
海外で巨大な組織を持つコンサル企業が日本に進出すると言うことはここ10年の間で、弊社以外一度も無いくらい稀れであり、アントレプレナーシップを持つ方には魅力的な機会です。
海外で巨大な組織を持つコンサル企業が日本に進出すると言うことはここ10年の間で、弊社以外一度も無いくらい稀れであり、アントレプレナーシップを持つ方には魅力的な機会です。
業務カテゴリ
組織カテゴリ
備考
応募ありがとうございました。コンサルタントからご連絡します
応募出来ませんでした。恐れ入りますがもう一度やり直してください
気になるに登録しました
気になるに登録出来ませんでした。恐れ入りますがもう一度やり直してください